# A COMPARISON OF INFLATABLE AND SEMI-RIGID DEPLOYABLE AERODYNAMIC DECELERATORS FOR FUTURE AEROCAPTURE AND ENTRY MISSIONS



Agility to Innovate, Strength to Deliver







- Current state-of-the-art
  - Mars Exploration Rovers and Mars Phoenix Lander
    - ❖ Landing altitude = -1.4 km MOLA
    - **❖** Entry mass = 1000 kg (590 kg payload)
  - Soon to be Mars Science Laboratory
    - **❖** Landing altitude = +2.0 km MOLA
    - **❖** Entry mass = 3000 kg (800 kg payload)
    - ❖ Guided entry with ~20 km x 8 km landing ellipse
- Deployable aeroshells will need to have equivalent or better performance
- This study:
  - Draws on the results of the High Mass Mars Entry Systems (HMMES) study results
  - Uses the EDL-SA evaluation criteria
  - Compares deployable entry systems using





- Started with multiple configuration options
- Narrowed to the configurations shown below using the evaluation criteria below
  - Data and configurations from literature









- Direct entry results shown (aerocapture followed by entry has same trends)
  - Entry velocity 7,500 m/s
  - Optimized results are shown for each configuration
- Three configurations are clearly superior, and nearly equivalent in mass efficiency





#### **Comparison of Deployable Configurations**

- Compare best 3 configurations from the HMMES study and the stacked torus as used in the EDL-SA study
  - Tension Cone (TC)
  - Trailing Torus (TT)
  - Rigid Radial Spars (RRS)
  - —Stacked Torus (ST)
- Use the Analytic Hierarchy Process (AHP) with top-level categories and weights from the EDL-SA study

| — Safety & | Mission A | Assurance ( | (0.35) | ١ |
|------------|-----------|-------------|--------|---|
|------------|-----------|-------------|--------|---|

- Affordability & LCC (0.25)

— Performance & Effectiveness (0.22)

- Programmatic Risk (0.13)

— Applicability to Other Missions (0.05)

- Criteria and weights chosen by NASA program managers
- Lower-level criteria modified to suit entry systems rather than architectures



#### **AHP Evaluation Criteria & Weights**





### **Safety & Mission Assurance Rankings**

| Configuration      | Abort & Reduncancy | # Mars Config Changes | # System Risks | Total Rank |
|--------------------|--------------------|-----------------------|----------------|------------|
| Rigid Radial Spars | 0.56               | 0.50                  | 0.50           | 0.52       |
| Trailing Torus     | 0.10               | 0.17                  | 0.17           | 0.14       |
| Tension Cone       | 0.10               | 0.17                  | 0.17           | 0.14       |
| Stacked Torus      | 0.25               | 0.17                  | 0.17           | 0.20       |

- RRS can be deployed early (even prior to Earth-orbit departure)
  - Allows additional abort option (don't depart)
  - Fewer configuration changes at Mars
  - No re-inflation between aerocapture and entry
- ST is slightly better than TT or TC due to redundant inflatable compartments
- RRS is more resistant to micro-meteoroid impacts since it doesn't rely on being air-tight
  - Large impacts would disable any configuration



#### Affordability & LCC Rankings

| Configuration  | Cost to<br>TRL6 | Cost from<br>TRL6 to 8 | EDL-Related LCC |                |               | Total<br>Rank |
|----------------|-----------------|------------------------|-----------------|----------------|---------------|---------------|
|                |                 |                        | Entry System    | Stowed Size of | Complexity of |               |
|                |                 |                        | Mass Fraction   | Entry System   | EDL System    |               |
| Rigid Radial   | 0.25            | 0.38                   | 0.35            | 0.07           | 0.25          | 0.28          |
| Spars          |                 |                        |                 |                |               |               |
| Trailing Torus | 0.10            | 0.13                   | 0.19            | 0.39           | 0.25          | 0.17          |
| Tension Cone   | 0.10            | 0.13                   | 0.35            | 0.39           | 0.25          | 0.18          |
| Stacked Torus  | 0.56            | 0.38                   | 0.11            | 0.15           | 0.25          | 0.37          |

- Primary advantage of the ST configuration is the complete sub-orbital test flight
  - All require some flexible TPS development
  - RRS has a test article ready for flight, but launch vehicle failed
  - TC and TT configurations are still paper studies and require additional development of very large diameter braiding machines or techniques

#### LCC costs

- Entry system mass fractions rely on HMMES study and EDL-SA study data
- Stowed size is the worst for the RRS configuration
- Complexity is equivalent for all configurations



#### **Performance & Effectiveness Rankings**

| Configuration      | Entry System Mass Fraction | Precision Landing |            | Total Rank |
|--------------------|----------------------------|-------------------|------------|------------|
|                    |                            | Lift Generation   | Wind Drift |            |
| Rigid Radial Spars | 0.35                       | 0.56              | 0.38       | 0.41       |
| Trailing Torus     | 0.19                       | 0.10              | 0.13       | 0.15       |
| Tension Cone       | 0.35                       | 0.10              | 0.13       | 0.23       |
| Stacked Torus      | 0.11                       | 0.25              | 0.38       | 0.21       |

- Entry system mass fraction is from HMMES and EDL-SA studies
- Precision landing capability
  - —Wind drift
    - Lower ballistic coefficient leads to lower wind drift
  - Lift generation
    - \* RRS configuration shape can be directly manipulated via geometry or support mass shift
    - \* ST configuration can support some geometry manipulation and limited mass shift
    - TT and TC configurations are difficult to skew, and their low stiffness supports very little mass shift



#### **Programmatic Risk Rankings**

| Configuration      | Level of EDL   | TRLs of Reg'd | R&D <sup>3</sup> Score of Reg'd | # of Config.  | Total |
|--------------------|----------------|---------------|---------------------------------|---------------|-------|
|                    | SystemMaturity | Technologies  | Technologies                    | Changes Req'd | Rank  |
| Rigid Radial Spars | 0.25           | 0.25          | 0.38                            | 0.50          | 0.34  |
| Trailing Torus     | 0.10           | 0.10          | 0.13                            | 0.17          | 0.12  |
| Tension Cone       | 0.10           | 0.10          | 0.13                            | 0.17          | 0.12  |
| Stacked Torus      | 0.56           | 0.56          | 0.38                            | 0.17          | 0.42  |

- System Maturity and TRL of required technologies
  - —ST configuration has been flow
  - RRS has a flight article ready to go
  - TC and TT are paper studies, and require larger braiding technology
- R&D3 scores
  - RRS and ST configurations ranked equal since both are dominated by flexible TPS development
  - TT and TC have additional work in braiding technology development
- The number of configuration changes is the lowest for the RRS configuration due to the potential for early deployment and no re-inflation between aerocapture and entry, and the same for the inflatable configurations



### **Applicability to Other Missions Rankings**

- All configurations ranked equivalent
  - Data exists to show applicability of deployables to other destinations
  - No data exists showing that any configuration is more suitable than another



#### **Overall Rankings & Conclusions**

| Configuration      | Overall Ranking | AHP Score |  |
|--------------------|-----------------|-----------|--|
| Rigid Radial Spars | 1               | 0.40      |  |
| Stacked Torus      | 2               | 0.27      |  |
| Tension Cone       | 3               | 0.18      |  |
| Trailing Torus     | 4               | 0.15      |  |

- Rigid Radial Spars configuration is ranked highest overall
  - Difference between RRS and ST was never more than a 3 (slight advantage)
  - —RRS ranked highest in the most heavily weighted categories
- TC and TT configurations ranked lowest
  - Primarily due to lack of redundancy and less mature designs
- Final rankings relatively insensitive to change in individual evaluation criteria
- Large difference between RRS and ST configurations
  - If EDL-SA study were re-evaluated with RRS (instead of ST), would its architecture rankings change?
  - Would rigid aeroshells still be the best choice?

## **Questions?**

Reuben R. Rohrschneider (rrohrsch@ball.com)

James Masciarelli and Kevin L. Miller

Agility to Innovate, Strength to Deliver

